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Abstract. In this paper we consider the mean length of transients and the length of state cycles
in random Boolean networks. We present an approximate calculation of these quantities as a
function of the size and connectivity of the network, where using an annealed approximation we
derive a recursive formula for the length of steps of the system. Using the mean step length and
an ‘effective momentary’ state space, we calculate an approximate formula for the probability
distribution function (PDF) of the length of state cycles and transients. We compare this PDF with
analytical results in special cases and with simulations by the Monte Carlo procedure.

1. Introduction

Random Boolean networks are typical examples of simple systems exhibiting complex
behaviour and were first introduced and applied to biological networks by Kauffman [1]. They
have been the subject of extensive research for several years and have become model systems
of many complex biological networks. This type of network has been applied as an abstract
model of numerous nonlinear complex systems: systems of interacting catalysts at the origins
of life, self-regulatory genomic systems, coupled co-evolutionary ecosystems [2] and neural
networks [3,4]. The behaviour of cellular networks is also closely related to classical models
of statistical physics such as the Ising model and percolation theory [5, 6]. Most previous
studies have considered this system from the point of phase transition [7-9] and have recently
extended this phenomenon to a random ordinary differential equation [10].

Focusing on the relationship between network structure and network dynamics, random
Boolean networks deserve study in their own right. Initially, the statistical properties of
trajectories of these networks were analysed using numerical simulations. Subsequent studies
examined the length and number of attractors and their stability [11], the multivalley structure of
the system [6,12], the multifractality in the size of avalanches caused by an initial damage [13];
many of them also investigated generalizations of this system, such as ordered-structure
automata [14, 15] or the inhomogeneous Kauffmann model [16, 17].

However, the scope of existing analytical results is rather restricted. The theory of random
mappings [18] provides a good approximation for high connectivity and the large-system
case [19]. On the other hand, Flyvbjerg and Kjer [20] provided exact solutions for most of
the statistical properties for the lowest connectivity case, when each cell had only one input, at
any system sizes. Between these two extremities, an annealed approximation by Derrida and
Pomeau [21] gave quantitative predictions for the evolution of distance between two randomly
chosen initial conditions. They predicted the critical number of input connections: K, = 2.
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This prediction agreed with numerical simulations and was later proven to be exact in the
thermodynamical limit under given temporal constraints [22]. In spite of the long history of
the topic, there are neither analytical results nor even approximations for the first simulated
statistical properties of the system for cases other than the two extremes. The aim of this
study is to provide an analytical approximation for the mean length of attractors and for the
transient length at any connectivity parameters (even for finite system sizes) and to give a
schema to understand the principles underlying the behaviour of this (structurally) simple but
(dynamically) complex system.

2. Methods describing random Boolean networks

2.1. Structure

A family of Boolean networks is characterized by the number of cells (N), and the number
of input connections (K) of a cell that equals the mean number of output connections. In a
representative of a family of these networks, N Boolean functions (one for each cell) are chosen
randomly with uniform distribution from the possible 22" functions. During the construction
of a representative net, K cells are chosen randomly with uniform distribution (among the N)
to provide the input for each function. Each element can be in either an on or off state and
the discrete dynamics is given as the synchronous change of the states of all cells according to
their respective Boolean functions (depending on the states of their respective K inputs).

The network structure and Boolean functions were quenched after construction. Properties
presented here are given as an average over all possible network structures; Boolean functions
and initial conditions and are denoted by an overline.

2.2. Dynamics

The state of the system is defined by an N-dimensional vector of Boolean functions’ output
values; thus the state space consists of an N-dimensional hypercube’s vertices. The length of
a step is given by the number of different values in two consecutive states.

For better understanding, let us follow the first step of the system. Due to the uniform
distribution of initial conditions and Boolean functions the result of this first step is also
uniformly distributed in state space. The probability density function (PDF) of these two
states” Hamming distance (i.e. the PDF of first step length, /;) is

1 N
PO =1) = <j\f) (5) . 0

Comparing the first and second state, the number of changed outputs is /;. Similarly to
Derrida’s calculations [21], the probability that all inputs of m cells come from unchanged
cells (if multiple connections are allowed) is

N —| Km N_ZKNim
o) (-C5) e

This means that the inputs of m cells remains unchanged, while N — m cells have at least
one changed input. Due to uniformly chosen Boolean functions, each of them changes its
output with probability % As the state of the system is determined by output values of cells,
the PDF of the difference between the first state’s successor and the second state’s successor
(i.e. the PDF of second step length, [») is

N 1 N—m N —m
pOa=h) =) pu=m) (5) ( L ) 3)
m=0
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Figure 1. Evolution of step length in a return map-like representation. Mean length of the next
step /41 is displayed as a function of previous step length /,, for N = 10 and K = 1-10. For
K =1 or 2, only one fixpoint exists (at zero) and it is stable. For K > 3, zero becomes unstable
but another stable fixpoint emerges. This fixpoint converges to N /2 as N and K tend to infinity.

Neglecting the correlation between consecutive steps and performing the summation over
m, a recursive formula is derived for the successive step length:

N 1 1 l K N*In+l 1 1 l K ln+l
POopst = Lyt | Ay = 1) = (ln+l) <§+§ (1 - N) ) (5 3 <1 - N) ) -4

Thus
N 1, \E\"
p()\n+l = ln+l | Ap = ln) = E (1 - (1 - ﬁ) ) . (5)

Applying this mean approximation, equation (5) gives the evolution of step length during
this random walk. The mean length of the next step as a function of the previous step is shown
in figure 1. The step length shortens exponentially when K = 1, and converges exponentially
to a finite value if K > 3. If K = 2 the decay is more slow, and proportional to 1/n. This slow
decay reflects the propensity of the system to sustain large fluctuations. This type of behaviour
is closely related to the classical model of percolation [23]. Note that if K and N tend to
infinity, equation (4) tends to the distribution in (1), referring to the uniform distribution of
consecutive states in state space. In this case we return to the random mapping approximation.

A trajectory of the system is considered as a self-avoiding walk in a contractive state
space, assuming that the system chooses a new state randomly from the current state space
until it reaches an already visited state. The volume contraction refers to the ‘freezing’ of
cells. ‘Freezing’ means that the state of a cell becomes stable from a moment of walk. The
volume of the current state space was estimated backwards from the momentary step length.
The effective momentary state space volume is

V, = 2N0-0-5%) (6)
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During the contraction, the number of reachable visited states also decreases. Let us
denote as b, the number of reachable visited states in the nth step. We assume that their
decrease is proportional to the state space decrease:

Vi
but1 = by - +1. (N
b =1, thus
byt = 1+ V, Z ! 8)
n+l — n+l — Vk .

By means of these quantities, we can construct the characteristic measures of the system’s
behaviour.

2.3. Characteristic measures

The length of a self-avoiding walk (the number of steps required to reach an already visited
place) equals the transient length plus the state cycle length (¢ + cl), and its PDF is expressed
by the following formula:

N n—1
bn bk
[+tr=n)= rM=10)— 1—— 9
plcl +1tr = n) IZ_;p(l I)VH,H( Vk) )
1= =
while the PDF of the state cycle length (c/) is
N Mo kol b,
plel=2)=) plu=10) v H(l —7>. (10)
1L,=0 k=z+1 k=2 j=1 i

3. Results

When K and N tend to infinity, our calculations gave the same results as the random
mapping approximation which is proven to be exact in the thermodynamical limit. The short
approximative form in this case is

c+ir =2cl = 1v2m2". (11)

Even in the case of finite connectivity and finite system size, our calculations for the length
of the whole path and the cycle length agreed qualitatively with simulations, so the calculated
decrease of step length can explain the observed phenomenon, see figures 2 and 3. In some
cases (K = 1,2, 5) they were even quantitatively acceptable approximations of simulations.
Over the threshold for connectivity, the mean length of self-avoiding walks and cycle length
rose exponentially as a function of N. In the case of K = 1 both measures remained at a
very low value as in the simulations, but the relative error of computation was high. When
K = 2 it rose much slower than exponentially, probably as a square-root function, very close
to the simulated values. In the exponential regime, but close to the critical border, at K = 3
and 4, our calculations strongly overestimate the simulated results. This can be attributed
to the approximation neglecting correlations of consecutive steps and using a mean-field-like
approximation for the evolution of step length.
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Figure 2. (a) Mean length of self-avoiding walks (t7 + cI) and (b) mean length of state cycles cl as
a function of system size (N) and connectivity (K). The exponential increase for K > 3 refers to
the ‘chaotic’ phase. Linked symbols: analytical calculations; unlinked symbols, numerical results
from simulations. K = oo comes from random mapping approximation.

4. Discussion

Our approach has provided an analytical approximation of the mean length of state cycles and
transients even at small system sizes, for any connectivity parameters. A major advantage
of our approach is that it allowed us to calculate these long-examined properties. A major
disadvantage of this approach is the low quantitative precision, especially in the exponential
regime, close to the critical connectivity limit. By taking correlations between consecutive steps
into consideration, this approximation could be improved, especially around the critical limit.
In addition, an important future goal is to find short approximations of the presented measures,
especially to check that cycle length increases as a square-root function in the case K = 2. Of
the possible applications of this theory we would emphasize two main directions. Following
Kiirten’s arguments [4], results for random Boolean networks are applicable for Hopfield-
type neural networks and for attractor networks and are also appropriate for understanding
the relationship between the structure and dynamics of these networks. In other words, the
structure in ‘real’ space corresponds to the structure of a content-addressable memory in
‘meaning’ space. The ‘chaotic’ feature of this type of network is able to enhance the learning
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Figure 3. Zoom of ‘frozen’ phase. (a) Mean length of self-avoiding walks (7 + ¢/) and (b) mean
length of state cycles cl as a function of system size (N) and connectivity (K). In the case of
K =2, (tr + cl) and (cl) increase slowly but in the case of K = 1 both measures remain at a low
value (same notation).

ability of an associative memory [24].

Recent findings have proved that numerous complex networks have random structure
where the PDF of an element’s connection number differs from the Gaussian-like distribution.
These ‘small-world’ networks can be characterized by connectivity distribution following a
power function. This property has been found in the networks of airlines, social connections,
and the link structure of the World Wide Web [25]. By means of random Boolean network
theory we could consider them as a dynamical system, and promote our understanding of these
networks’ behaviour.
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Appendix

For sake of accuracy we give the results in numerical forms in tables 1 and 2.
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Table 1. The mean length of state cycles (cl).

6705

1 2 3 4 5
N sim calc. sim. calc. sim. calc. sim. calc. sim. calc.

5 1463 0.986 2.093 1.616 2.519 2.020 2.845 2.200 3.115 2.294
10 1.538 0.997 2.95 2.382 4.449 5.441 6.551 7.148 9.011 7.788
15 1.583 1.120 3794 2912 7.152 15.37 14.80 23.85 27.97 27.31
20 1.606 1.016 4534 3.328 11.33 44.47 35.57 80.57 93.11 96.70
25 1.619 1.011 5.388 3.707 18.04 129.3 87.94 272.9 318.6 343.0
30 1.626 1.085 6421 4.054 29.17 337.0 225.6 808.9
35 1.623  1.066 7442 4372 47.86 578.0
40 1.637 0.966 8.606 4.677 79.84
45  1.648 0.885 10.37 4974 1377
50 1.644 0.899 11.00 5.251 2377

Table 2. The mean length of self-avoiding walks (17 + cl).
1 2 3 4 5
N sim. calc. sim. calc. sim. calc. sim. calc. sim. calc.

5 3.081 1.843 3.921 2.938 4.633 3.362 5.189 3.552 5.596 3.668
10 4.014 2.531 6.397 6.033 9.642 10.61 13.93 13.02 18.69 14.26
15 4.603 3.460 8.612 9.225 16.46 30.80 32.44 46.15 58.46 52.61
20 5.011 3462 10.54 12.30 26.46 89.23 76.63 159.0 191.3 190.3
25 5361 3.742  12.50 15.23 42.07 259.2 185.1 542.7 644.7 681.4
30 5.631 4254 14.66 18.04 66.13 754.7 463.0
35 5.847 4346 16.80 20.71 106.2 1178
40 6.052 4.081 19.02 23.33 174.7
45  6.227 3.867 21.78 25.89 292.8
50 6.376 4.055 23.38 28.36 496.7
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